organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloro-6-methoxy-N-(2,2,6,6-tetramethylpiperidin-4-yl)-1,3,5-triazin-2aminium chloride

Bin Zhou,^{a,b} Wen-Yuan Gao,^a* Tie-Jun Zhang^c and Ke-Yue Liu^d

^aCollege of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, ^bSchool of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, ^cModernization of Chinese Traditional Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China, and ^dMedical College, Jiujiang University, Jiujiang 332000, People's Republic of China Correspondence e-mail: tju_gao@163.com

Received 30 July 2007; accepted 1 August 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.041; *wR* factor = 0.100; data-to-parameter ratio = 16.1.

The crystal structure of the title compound, C₁₃H₂₃- $ClN_5O^+ \cdot Cl^-$, is stabilized by intermolecular $N-H \cdot \cdot \cdot Cl$ hydrogen bonds which help to establish the crystal packing. The piperidine ring adopts a chair conformation.

Related literature

For general background, see Borzatta & Carrozza (1991). For related structures, see Deng et al. (2006).

For related literature, see: Kaiser & Thurston (1951).

Experimental

Crystal data

$C_{13}H_{23}CIN_5O^+ \cdot Cl^-$	V = 1706.7 (6) Å ³
$M_r = 336.26$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.7987 (16) Å	$\mu = 0.39 \text{ mm}^{-1}$
b = 8.9425 (18) Å	T = 113 (2) K
c = 24.472 (5) Å	$0.30 \times 0.26 \times 0.22 \text{ mm}$
$\beta = 90.36 \ (3)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.893, T_{\max} = 0.920$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	
$wR(F^2) = 0.100$	
S = 1.08	
3338 reflections	
207 parameters	

Table 1

D-N4-N5-

N5-

$H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H4\cdots Cl2^{i}$	0.82 (3)	2.45 (3)	3.2639 (19)	171 (2)
-H5 $A\cdots Cl2$	0.86 (2)	2.33 (2)	3.1821 (17)	173.2 (19)
-H5 $B\cdots Cl2^{ii}$	0.85 (3)	2.32 (3)	3.1714 (18)	177 (2)

13533 measured reflections

 $R_{\rm int} = 0.026$

refinement

 $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

3338 independent reflections

3184 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2461).

References

Borzatta, V. & Carrozza, P. (1991). Eur. Patent EP 0 462 069.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Deng, Y., Wang, X.-J., Wen, F., Wang, L. & Zhang, Y. (2006). Acta Cryst. E62, 05207-05208.

Kaiser, D. W. & Thurston, J. T. (1951). J. Am. Chem. Soc. 73, 2984-2986.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3716 [doi:10.1107/S1600536807037877]

4-Chloro-6-methoxy-N-(2,2,6,6-tetramethylpiperidin-4-yl)-1,3,5-triazin-2-aminium chloride

B. Zhou, W.-Y. Gao, T.-J. Zhang and K.-Y. Liu

Comment

The title compound is an intermediate for the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991). Its derivatives have many applications in organic chemistry (Deng *et al.*, 2006).

The triazine ring is essentially planar with an r.m.s. deviation from the mean plane of 0.0038 Å. The molecules are linked by intermolecular N—H…Cl hydrogen bonds (Table 1) forming zigzag chains.

Experimental

The title compound was obtained according to the method of Kaiser & Thurston (1951). 2,4,6-Trichloro-1,3,5-triazine (40.0 g, 0.217 mol) was dissolved in toluene (120 ml) and then cooled to 278 K. With stirring, a solution of 2,2,6,6-tetramethyl-piperidin-4-amine(33.23 g, 0.213 mol) in toluene (50 ml) was then added dropwise to the mixture over a period of 0.5 h. Then a solution of Na₂CO₃ (23.02 g, 0.217 mol) in water (50 ml) was then added dropwise for 0.5 h. The mixture was stirred at 273–278 K for further 3 h. The organic layer was washed with water and then concentrated *in vacuo*. 4,6-dichloro-*N*-(2,2,6,6-tetramethylpiperidin-4-yl)-1,3,5-triazin-2-amine (60.88 g) was obtained in powder form in a yield of 85.0%. Crystals were obtained by slow evaporation of a solution of methanol.

Refinement

H atoms bonded to C were positioned geometrically (C—H=0.96–0.97 Å), and refined as riding with $U_{iso}(H)=1.2U_{eq}(C)$ or $1.5_{eq}(C_{methyl})$. The methyl groups were allowed to rotate but not to tip. H atoms bonded to N were freely refined.

Figures

Fig. 1. A view of the molecular structure of the title compound. Displacement ellopsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

4-Chloro-6-methoxy-N-(2,2,6,6-tetramethylpiperidin-4-yl)- 1,3,5-triazin-2-aminium chloride

Crystal data

$C_{13}H_{23}ClN_5O^+{\cdot}Cl^-$
$M_r = 336.26$
Monoclinic, $P2_1/n$

 $F_{000} = 712$ $D_x = 1.309 \text{ Mg m}^{-3}$ Mo K α radiation

supplementary materials

a = 7.7987 (16) Å
<i>b</i> = 8.9425 (18) Å
c = 24.472 (5) Å
$\beta = 90.36 (3)^{\circ}$
V = 1706.7 (6) Å ³
Z = 4

Data collection

Rigaku Saturn diffractometer	3338 independent reflections
Radiation source: rotating anode	3184 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.026$
T = 113(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$h = -9 \rightarrow 9$
$T_{\min} = 0.893, \ T_{\max} = 0.920$	$k = -11 \rightarrow 10$
13533 measured reflections	$l = -30 \rightarrow 30$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.3-25.0^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 113 (2) KBlock, colorless $0.30 \times 0.26 \times 0.22 \text{ mm}$

Cell parameters from 2231 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 1.4811P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.003$
3338 reflections	$\Delta \rho_{max} = 0.73 \text{ e} \text{\AA}^{-3}$
207 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.81987 (7)	1.44507 (5)	0.04206 (2)	0.02810 (15)
01	0.8043 (2)	0.94806 (17)	-0.03288 (6)	0.0332 (4)
C1	0.7679 (3)	0.7961 (3)	-0.03155 (10)	0.0363 (5)
H1A	0.8330	0.7497	-0.0028	0.054*
H1B	0.7979	0.7517	-0.0659	0.054*
H1C	0.6477	0.7818	-0.0251	0.054*
C12	0.39494 (7)	0.25965 (5)	0.22079 (2)	0.02840 (15)
N1	0.6796 (2)	1.21886 (18)	0.09038 (7)	0.0225 (4)
N2	0.8057 (2)	1.17694 (19)	0.00360 (7)	0.0248 (4)
N3	0.6822 (2)	0.97133 (19)	0.05197 (7)	0.0232 (4)
N4	0.5635 (2)	1.02010 (19)	0.13604 (7)	0.0225 (4)
H4	0.533 (3)	1.085 (3)	0.1578 (10)	0.031 (6)*
N5	0.3789 (2)	0.61101 (18)	0.20083 (6)	0.0158 (3)
C2	0.7615 (3)	1.0330 (2)	0.00984 (8)	0.0239 (4)
C3	0.7600 (2)	1.2577 (2)	0.04591 (8)	0.0219 (4)
C4	0.6431 (2)	1.0695 (2)	0.09169 (8)	0.0215 (4)
C5	0.5324 (2)	0.8625 (2)	0.14724 (7)	0.0189 (4)
Н5	0.6095	0.8027	0.1245	0.023*
C6	0.5720 (2)	0.8292 (2)	0.20701 (8)	0.0203 (4)
H6A	0.4947	0.8863	0.2298	0.024*
H6B	0.6881	0.8612	0.2153	0.024*
C7	0.5540 (2)	0.6633 (2)	0.22059 (7)	0.0178 (4)
C8	0.6969 (2)	0.5703 (2)	0.19527 (8)	0.0236 (4)
H8A	0.6676	0.4661	0.1972	0.035*
H8B	0.8021	0.5875	0.2149	0.035*
H8C	0.7111	0.5986	0.1577	0.035*
С9	0.5543 (3)	0.6403 (2)	0.28253 (8)	0.0254 (4)
H9A	0.4610	0.6952	0.2983	0.038*
H9B	0.6608	0.6756	0.2976	0.038*
Н9С	0.5413	0.5359	0.2905	0.038*
C10	0.3192 (2)	0.6498 (2)	0.14307 (7)	0.0187 (4)
C11	0.4114 (3)	0.5538 (2)	0.10096 (8)	0.0259 (4)
H11A	0.3499	0.5574	0.0669	0.039*
H11B	0.4167	0.4523	0.1136	0.039*
H11C	0.5255	0.5912	0.0959	0.039*
C12	0.1282 (3)	0.6144 (2)	0.14119 (9)	0.0301 (5)
H12A	0.0703	0.6708	0.1689	0.045*
H12B	0.1113	0.5095	0.1475	0.045*
H12C	0.0826	0.6405	0.1059	0.045*
C13	0.3487 (2)	0.8168 (2)	0.13443 (8)	0.0199 (4)
H13A	0.3221	0.8421	0.0968	0.024*
H13B	0.2715	0.8727	0.1577	0.024*
H5A	0.375 (3)	0.516 (3)	0.2050 (8)	0.020 (5)*
H5B	0.307 (3)	0.649 (3)	0.2227 (10)	0.030 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0336 (3)	0.0207 (3)	0.0301 (3)	-0.00790 (19)	0.0058 (2)	0.00253 (18)
01	0.0408 (9)	0.0347 (9)	0.0240 (7)	0.0047 (7)	0.0050 (6)	0.0038 (6)
C1	0.0308 (12)	0.0306 (12)	0.0474 (14)	0.0022 (9)	-0.0033 (10)	-0.0169 (10)
Cl2	0.0318 (3)	0.0169 (2)	0.0367 (3)	-0.00237 (18)	0.0135 (2)	0.00176 (19)
N1	0.0243 (8)	0.0185 (8)	0.0247 (8)	-0.0038 (6)	0.0008 (7)	0.0033 (6)
N2	0.0283 (9)	0.0219 (8)	0.0243 (8)	-0.0009(7)	0.0002 (7)	0.0019 (7)
N3	0.0235 (8)	0.0236 (8)	0.0225 (8)	-0.0002 (7)	-0.0005 (7)	0.0036 (7)
N4	0.0292 (9)	0.0151 (8)	0.0233 (8)	-0.0030 (7)	0.0054 (7)	0.0011 (7)
N5	0.0155 (7)	0.0135 (8)	0.0183 (8)	-0.0011 (6)	0.0021 (6)	0.0013 (6)
C2	0.0261 (10)	0.0256 (10)	0.0199 (9)	0.0036 (8)	-0.0035 (8)	-0.0008 (8)
C3	0.0210 (9)	0.0217 (10)	0.0230 (10)	-0.0031 (7)	-0.0023 (8)	0.0040 (7)
C4	0.0192 (9)	0.0223 (10)	0.0230 (9)	-0.0017 (7)	-0.0015 (7)	0.0042 (8)
C5	0.0212 (9)	0.0146 (9)	0.0209 (9)	-0.0018 (7)	0.0020 (7)	0.0026 (7)
C6	0.0208 (9)	0.0180 (9)	0.0222 (9)	-0.0048 (7)	-0.0042 (7)	-0.0002 (7)
C7	0.0148 (8)	0.0186 (9)	0.0200 (9)	-0.0029 (7)	-0.0024 (7)	0.0008 (7)
C8	0.0177 (9)	0.0234 (10)	0.0298 (10)	0.0020 (7)	0.0013 (8)	0.0048 (8)
C9	0.0292 (10)	0.0259 (10)	0.0210 (10)	0.0000 (8)	-0.0049 (8)	0.0031 (8)
C10	0.0181 (9)	0.0201 (9)	0.0180 (9)	-0.0031 (7)	-0.0030 (7)	0.0005 (7)
C11	0.0342 (11)	0.0228 (10)	0.0208 (9)	-0.0035 (8)	-0.0005 (8)	-0.0055 (8)
C12	0.0205 (10)	0.0339 (11)	0.0357 (12)	-0.0081 (9)	-0.0062 (9)	0.0021 (9)
C13	0.0208 (9)	0.0191 (9)	0.0197 (9)	0.0005 (7)	-0.0032 (7)	0.0034 (7)

Geometric parameters (Å, °)

Cl1—C3	1.742 (2)	C6—C7	1.527 (3)
O1—C2	1.336 (2)	C6—H6A	0.9700
01—C1	1.389 (3)	С6—Н6В	0.9700
C1—H1A	0.9600	C7—C8	1.525 (3)
C1—H1B	0.9600	С7—С9	1.530 (3)
C1—H1C	0.9600	C8—H8A	0.9600
N1—C3	1.307 (3)	C8—H8B	0.9600
N1C4	1.366 (2)	C8—H8C	0.9600
N2—C3	1.313 (3)	С9—Н9А	0.9600
N2	1.341 (3)	С9—Н9В	0.9600
N3—C2	1.326 (3)	С9—Н9С	0.9600
N3—C4	1.346 (3)	C10—C12	1.523 (3)
N4C4	1.329 (2)	C10—C11	1.525 (3)
N4—C5	1.456 (2)	C10—C13	1.526 (3)
N4—H4	0.82 (3)	C11—H11A	0.9600
N5—C7	1.520 (2)	C11—H11B	0.9600
N5-C10	1.525 (2)	C11—H11C	0.9600
N5—H5A	0.86 (2)	C12—H12A	0.9600
N5—H5B	0.85 (3)	C12—H12B	0.9600
C5—C13	1.521 (3)	C12—H12C	0.9600
С5—С6	1.522 (3)	C13—H13A	0.9700

С5—Н5	0.9800	С13—Н13В	0.9700
C2	119.09 (17)	N5—C7—C6	108.24 (14)
O1—C1—H1A	109.5	C8—C7—C6	111.90 (15)
O1—C1—H1B	109.5	N5—C7—C9	105.65 (14)
H1A—C1—H1B	109.5	C8—C7—C9	109.46 (16)
01—C1—H1C	109.5	С6—С7—С9	110.26 (15)
H1A—C1—H1C	109.5	С7—С8—Н8А	109.5
H1B—C1—H1C	109.5	С7—С8—Н8В	109.5
C3—N1—C4	112.36 (17)	H8A—C8—H8B	109.5
C3—N2—C2	111.51 (17)	С7—С8—Н8С	109.5
C2—N3—C4	113.51 (17)	H8A—C8—H8C	109.5
C4—N4—C5	123.67 (17)	H8B—C8—H8C	109.5
C4—N4—H4	115.7 (17)	С7—С9—Н9А	109.5
C5—N4—H4	120.6 (17)	С7—С9—Н9В	109.5
C7—N5—C10	119.56 (14)	Н9А—С9—Н9В	109.5
C7—N5—H5A	107.6 (14)	С7—С9—Н9С	109.5
C10—N5—H5A	108.8 (14)	Н9А—С9—Н9С	109.5
C7—N5—H5B	105.8 (16)	H9B—C9—H9C	109.5
C10—N5—H5B	107.0 (16)	C12—C10—C11	109.14 (16)
H5A—N5—H5B	107 (2)	C12 - C10 - N5	105 87 (15)
N3-C2-O1	119 45 (18)	C11 - C10 - N5	110.86 (15)
$N_3 = C_2 = N_2$	127 54 (18)	C12 - C10 - C13	110.33 (16)
01 - C2 - N2	113 02 (17)	$C_{11} - C_{10} - C_{13}$	112.65 (15)
N1 - C3 - N2	130 13 (18)	N5-C10-C13	107 78 (14)
N1-C3-C11	115 52 (15)	C10-C11-H11A	109.5
$N_2 - C_3 - C_{11}$	114 34 (14)	C10-C11-H11B	109.5
N4-C4-N3	118.80 (17)	H11A—C11—H11B	109.5
N4-C4-N1	116.26 (18)	C10-C11-H11C	109.5
$N_3 - C_4 - N_1$	124 94 (17)	H11A-C11-H11C	109.5
N4-C5-C13	112 27 (15)	H11B—C11—H11C	109.5
N4-C5-C6	109.68 (15)	C10-C12-H12A	109.5
$C_{13} - C_{5} - C_{6}$	109.31 (15)	C10-C12-H12B	109.5
N4_C5_H5	108.5	H12A - C12 - H12B	109.5
C13_C5_H5	108.5	C10-C12-H12C	109.5
C6-C5-H5	108.5	H12A - C12 - H12C	109.5
C5-C6-C7	112 37 (15)	H12B_C12_H12C	109.5
C5-C6-H6A	109.1	C_{5} C_{13} C_{10}	112 14 (15)
C7_C6_H6A	109.1	C_{5} C_{13} H_{13}	109.2
C5_C6_H6B	109.1	C10-C13-H13A	109.2
C7_C6_H6B	109.1	C5_C13_H13B	109.2
	107.0	C10 C13 H13B	109.2
N5 C7 C8	107.3	H13A C13 H13B	107.9
N5-C7-C8	111.14 (13)		107.9
C4—N3—C2—O1	-178.66 (17)	C4—N4—C5—C6	136.65 (19)
C4—N3—C2—N2	0.6 (3)	N4—C5—C6—C7	-176.00 (15)
C1—O1—C2—N3	-1.4 (3)	C13—C5—C6—C7	60.5 (2)
C1—O1—C2—N2	179.17 (18)	C10—N5—C7—C8	-74.9 (2)
C3—N2—C2—N3	-0.1 (3)	C10—N5—C7—C6	48.4 (2)
C3—N2—C2—O1	179.19 (17)	C10—N5—C7—C9	166.45 (15)

supplementary materials

C4—N1—C3—N2	1.5 (3)	C5—C6—C7—N5	-52.0 (2)
C4—N1—C3—Cl1	-177.39 (13)	C5—C6—C7—C8	70.9 (2)
C2—N2—C3—N1	-1.1 (3)	C5—C6—C7—C9	-167.06 (15)
C2—N2—C3—Cl1	177.82 (14)	C7—N5—C10—C12	-167.06 (16)
C5—N4—C4—N3	7.1 (3)	C7—N5—C10—C11	74.7 (2)
C5—N4—C4—N1	-172.68 (17)	C7—N5—C10—C13	-49.0 (2)
C2—N3—C4—N4	-179.88 (18)	N4C5C13C10	176.70 (15)
C2—N3—C4—N1	-0.1 (3)	C6-C5-C13-C10	-61.3 (2)
C3—N1—C4—N4	178.98 (17)	C12-C10-C13-C5	168.49 (16)
C3—N1—C4—N3	-0.8 (3)	C11—C10—C13—C5	-69.3 (2)
C4—N4—C5—C13	-101.6 (2)	N5-C10-C13-C5	53.34 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N4—H4···Cl2 ⁱ	0.82 (3)	2.45 (3)	3.2639 (19)	171 (2)
N5—H5A···Cl2	0.86 (2)	2.33 (2)	3.1821 (17)	173.2 (19)
N5—H5B···Cl2 ⁱⁱ	0.85 (3)	2.32 (3)	3.1714 (18)	177 (2)
	. 1.12			

Symmetry codes: (i) x, y+1, z; (ii) -x+1/2, y+1/2, -z+1/2.

Fig. 1